Math, asked by prinnczzzzz, 1 month ago

prove that sec a - tan a is equal to 1 upon sec a + tan a​
Please ans. This

Answers

Answered by ᏞiteralFairy
44

\underline{\boxed{\purple{\sf Given \: LHS:}}}

\sf{\dfrac{1}{sec\:A\:+\:tan\:A}}

\underline{\boxed{\orange{\sf To \: prove: }}}

\sf{sec\:A-\:tan\:A\:=\:\dfrac{1}{sec\:A\:+\:tan\:A}}

\underline{\boxed{\purple{\sf Proof: }}}

Taking RHS :

\sf{\dfrac{1}{sec\:A+tan\:A}}

Multiply numerator and denominator by sec A - Tan A.

\sf{\dfrac{1}{sec\:A+\:tan\:A}\:\times\:\dfrac{sec\:A\:-\:tan\:A}{sec\:A\:-\:tan\:A}}

\sf{\dfrac{1\:\times\:sec\:A\:-\:tan\:A}{(sec\:A\:+\:cos\:A)\:\times\:(sec\:A\:-\:Tan\:A)}}

\sf{\dfrac{sec\:A\:-\:tan\:A}{sec^2\:A\:-\:tan^2\:A}}

\bold{\big[\because\:(a+b)(a-b)=a^2-b^2\big]}

\sf{\dfrac{sec\:A\:-\:tan\:A}{1}}

\bold{\big[\because\:sec^2\:A\:-\:tan^2\:A\:=\:1\big]}

\sf{sec\:A\:-\:tan\:A}

\underline{\boxed{\orange{\sf Hence \: Proved: }}}

\large{\boxed{\bold{sec\:A-\:tan\:A\:=\:\dfrac{1}{sec\:A\:+\:tan\:A}}}}

Answered by llMsFlawlessll
98

\huge\underline\frak{\fbox\red{★ Solution : }}

\sf{\underline{\overline{\pink{Given\:  LHS :}}}}

\sf{sec\:A-\:tan\:A}

\sf{\underline{\overline{\purple{Given\: RHS :}}}}

\sf{\dfrac{1}{sec\:A\:+\:tan\:A}}

\sf{\underline{\overline{\orange{To\: prove :}}}}

\sf{sec\:A-\:tan\:A\:=\:\dfrac{1}{sec\:A\:+\:tan\:A}}

\sf{\underline{\overline{\blue{Proof :}}}}

Taking RHS :

\sf{\dfrac{1}{sec\:A+tan\:A}}

Multiply numerator and denominator by \bold{sec\:  A - Tan\: A.}

\sf{\dfrac{1}{sec\:A+\:tan\:A}\:\times\:\dfrac{sec\:A\:-\:tan\:A}{sec\:A\:-\:tan\:A}}

\sf{\dfrac{1\:\times\:sec\:A\:-\:tan\:A}{(sec\:A\:+\:cos\:A)\:\times\:(sec\:A\:-\:Tan\:A)}}

\sf{\dfrac{sec\:A\:-\:tan\:A}{sec^2\:A\:-\:tan^2\:A}}

\bold{\big[\because\:(a+b)(a-b)=a^2-b^2\big]}

\sf{\dfrac{sec\:A\:-\:tan\:A}{1}}

\bold{\big[\because\:sec^2\:A\:-\:tan^2\:A\:=\:1\big]}

\sf{sec\:A\:-\:tan\:A}

Hence proved.

\large{\boxed{\bold{sec\:A-\:tan\:A\:=\:\dfrac{1}{sec\:A\:+\:tan\:A}}}}

Similar questions