Math, asked by prathavish123, 3 months ago

Prove that:

sec A + tan A /sec A - tan A =[1 + sin A /cos A]²​

Answers

Answered by mathdude500
1

Given Question :-

\sf \: Prove \: that: \dfrac{secA + tanA}{secA - tanA}  =  {\bigg(\dfrac{1 + sinA}{cosA} \bigg) }^{2}

Identities Used :-

\purple{\boxed{ \bf \: {sec}^{2}x -  {tan}^{2}x = 1}}

\purple{\boxed{ \bf \:secx = \dfrac{1}{cosx}}}

\purple{\boxed{ \bf \:tanx = \dfrac{sinx}{cosx}}}

\green{\large\underline{\sf{Solution-}}}

Consider,

\rm :\longmapsto\: \dfrac{secA + tanA}{secA - tanA}

\rm \: = \:  \:   \dfrac{secA + tanA}{secA - tanA} \times \dfrac{secA + tanA}{secA + tanA}

\rm \: = \:  \:   \dfrac{ {(secA + tanA)}^{2} }{ {sec}^{2}A -  {tan}^{2}A}

\rm \: = \:  \:   \dfrac{ {(secA + tanA)}^{2} }{1}

\rm \: = \:  \:  {(secA + tanA)}^{2}

\rm \: = \:  \: {\bigg(\dfrac{1}{cosA}  + \dfrac{sinA}{cosA} \bigg) }^{2}

\rm \: = \:  \: {\bigg(\dfrac{1 + sinA}{cosA} \bigg) }^{2}

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions