Math, asked by sunitashinde290, 7 months ago

prove that , sec square 0 + cosec square 0 = sec square 0 × cosec square 0​

Answers

Answered by hemant9999
2

Step-by-step explanation:

please mark brainliest

Attachments:
Answered by pulakmath007
54

FORMULA TO BE IMPLEMENTED

{\sin }^{2}  \theta  + {\cos }^{2}  \theta = 1

TO PROVE

{\sec }^{2}  \theta + {\cosec }^{2}  \theta =  {\sec }^{2}  \theta  \times  {\cosec }^{2}  \theta

PROOF

We are aware of the Trigonometric identity that

{\sin }^{2}  \theta  + {\cos }^{2}  \theta = 1

 \sf \:{Dividing  \: both \:  sides \:  by \:    \: {\sin }^{2}  \theta   \times  {\cos }^{2}  \theta \:  we \:  get }

 \displaystyle \:  \frac{ {\sin }^{2}  \theta   }{{\sin }^{2}  \theta   \times  {\cos }^{2}  \theta}  +  \frac{ {\cos }^{2}  \theta   }{{\sin }^{2}  \theta   \times  {\cos }^{2}  \theta}   =  \frac{1}{ \frac{ {\sin }^{2}  \theta   }{{\sin }^{2}  \theta   \times  {\cos }^{2}  \theta}  }

  \implies \: \displaystyle \:  \frac{ 1   }{  {\cos }^{2}  \theta}  +  \frac{1   }{{\sin }^{2}  \theta  }   =  \frac{1}{{\sin }^{2}  \theta   \times  {\cos }^{2}  \theta}

 \implies \: {\sec }^{2}  \theta + {\cosec }^{2}  \theta =  {\sec }^{2}  \theta  \times  {\cosec }^{2}  \theta

Similar questions