Math, asked by adnan47, 1 year ago

prove that sec Square a +cosec square a= sec square a* cosec square a

Answers

Answered by Anonymous
63
hope this helps....!
Attachments:

adnan47: it is right thnks for helping me
Anonymous: always welcome dude.... :)
Answered by amirgraveiens
22

Proved below.

Step-by-step explanation:

Given:

sec^2a+cosec^2a=sec^2a \times cosec^2a

LHS = sec^2a+cosec^2a

       = \frac{1}{cos^2a} +\frac{1}{sin^2a}    [sec^2a=\frac{1}{cos^2a}, cosec^2a= \frac{1}{sin^2a} ]

       = \frac{sin^2a+cos^2a}{sin^2a\times cos^2a}

       = \frac{1}{cos^2asin^2a}          [sin^2a+cos^2a=1]

       = \frac{1}{cos^2a}\times \frac{1}{cosec^2a}

      = sec^2a \times cosec^2a               [sec^2a=\frac{1}{cos^2a}, cosec^2a= \frac{1}{sin^2a} ]

       = RHS.

Hence proved.

Similar questions