Math, asked by sbrainachushm4i, 1 year ago

Prove that [sec -tan]2 =1-sin/1+sin

Answers

Answered by the991
38
here's your answer. mark brainliest if I was able to clear your doubt
Attachments:
Answered by jitumahi435
24

To prove that: (\sec A -\tan A)^{2} = \dfrac{1-\sin A}{1+\sin A}.

Solution:

R.H.S. = \dfrac{1-\sin A}{1+\sin A}

Rationalising numerator and denominator, we get

= \dfrac{1-\sin A}{1+\sin A}\times \dfrac{1-\sin A}{1-\sin A}

= \dfrac{(1-\sin A)^2}{1^2-\sin^2 A}

Using the algebraic identity:

(a + b)(a - b) = a^{2} - b^{2}

= \dfrac{1+\sin^2 A-2\sin A}{1-\sin^2 A} [ ∵ (a-b)^{2} =a^{2} +b^{2} - 2ab]

= \dfrac{1+\sin^2 A-2\sin A}{\cos^2 A}

= \dfrac{1}{\cos^2 A}+\dfrac{\sin^2 A}{\cos^2 A}-\dfrac{ 2\sin A}{\cos A}\dfrac{ 1}{\cos A}

= \sec^2 A+\tan^2 A-2\sec A\tan A

= (\sec A-\tan A)^2

= L.H.S., proved.

Thus, (\sec A -\tan A)^{2} = \dfrac{1-\sin A}{1+\sin A}, proved.

Similar questions