prove that sec +tan = cos/1-sin with steps
Answers
Answered by
1
Answer:
LHS=secA+tanA RHS= cos/(1-sinA)
Step-by-step explanation:
Taking, LHS=
as, {secA=1/cosA} and {tanA=sinA/cosA}
=(1/cosA)+(sinA/cosA)
=(1+sinA)/cosA
on Rationalising denominator;
=[(1+sinA)/cosA]×[cosA/cosA]
=[(1+sinA)cosA]÷cos²A
as, sin²A+cos²A=1
=[(1+sinA)cosA]÷(1-sin²A)
using identity, a²–b²=(a+b)(a-b)
=[(1+sinA)cosA]÷[(1+sinA)(1-sinA)]
=cos/1-sinA
Hence, proved
Hope this helps:)
Similar questions
Political Science,
2 months ago
Math,
5 months ago
Computer Science,
5 months ago
Computer Science,
10 months ago
Science,
10 months ago
Math,
10 months ago