Math, asked by alisha944, 1 year ago

prove that

(sec theta- tan theta)2=1- sin theta/1+ sin theta

Answers

Answered by fanbruhh
90

 \huge \bf \underline{hey}


 \huge{ \mathfrak{here \: is \: answer}}

 \bf{see \: in \: pic}



  \huge \boxed{ \ulcorner{hope \: it \: helps}}

 \huge{ \mathfrak{THANKS}}

Attachments:
Answered by Anonymous
188
Hey there !!

Prove that :-

→ (secθ - tanθ)² = \bf \frac{ 1-sin \theta }{1+sin \theta } .

Solution :-

→ (sec θ - tan θ )².

⇒ ( \bf \frac{1}{ cos \theta } - \frac{ sin \theta }{ cos \theta } )² .

⇒ (  \bf \frac{ 1 - sin \theta }{ cos \theta } )² .

 \bf\frac{{(1 - sin \theta })^{2}} {{cos}^{2} \theta} .

 \bf \frac{ ( 1 - sin \theta )(1 - sin \theta ) }{1 - {sin}^{2} \theta }

 \bf \frac{ \cancel{ ( 1 - sin \theta )} (1 - sin \theta ) }{ \cancel{ ( 1 - sin \theta ) } ( 1 + sin \theta ) }

⇒ (secθ - tanθ)² = \bf \frac{ 1-sin \theta }{1+sin \theta } .

Hence, it is proved.

THANKS

#BeBrainly.
Similar questions