Prove that (sec theta - tan theta)square = 1- sin theta /1+sin theta
Answers
Answered by
0
Answer:
Step-by-step explanation:
Attachments:
Answered by
0
To prove ------>
( Secθ - tanθ )² = ( 1 - Sinθ ) / ( 1 + Sinθ )
Proof -----> LHS
= ( Secθ - tanθ )²
We know that,
Secθ = 1 / Cosθ , tanθ = Sinθ / Cosθ , applying these formulee here, we get,
= ( 1 / Cosθ - Sinθ / Cosθ )²
= { ( 1 - Sinθ ) / Cosθ }²
= ( 1 - Sinθ )² / Cos²θ
We know that , Cos²A = 1 - Sin²A , applying it , we get,
= ( 1 - Sinθ )² / ( 1 - Sin²θ )
= ( 1 - Sinθ )² / ( 1 )² - ( Sinθ )²
We know that, a² - b² = ( a + b ) ( a - b ) , applying it , we get,
= ( 1 - Sinθ )² / ( 1 + Sinθ ) ( 1 - Sinθ )
= ( 1 - Sinθ ) / ( 1 + Sinθ ) = RHS
Similar questions
Math,
5 months ago
Computer Science,
5 months ago
India Languages,
5 months ago
History,
11 months ago
Political Science,
11 months ago
Math,
1 year ago
English,
1 year ago