prove that sec theta upon tan theta + cot theta is equal to sin theta
Attachments:
![](https://hi-static.z-dn.net/files/d73/eed7ea10cd6a43a9c3e7db97e1535476.jpg)
Answers
Answered by
4
I think this may help you
Attachments:
![](https://hi-static.z-dn.net/files/de8/204ea056a5484887e8acacb55a029918.jpg)
Answered by
7
Step by step explanation:
![\frac{ \sec(a) }{ \tan(a) + \cot(a) } = \sin(a) \frac{ \sec(a) }{ \tan(a) + \cot(a) } = \sin(a)](https://tex.z-dn.net/?f=+%5Cfrac%7B+%5Csec%28a%29+%7D%7B+%5Ctan%28a%29+%2B++%5Ccot%28a%29++%7D++%3D++%5Csin%28a%29+)
![lhs = \frac{1}{ \cos(a) } \times \ \tan(a)+\cot(a) lhs = \frac{1}{ \cos(a) } \times \ \tan(a)+\cot(a)](https://tex.z-dn.net/?f=lhs++%3D+%5Cfrac%7B1%7D%7B+%5Ccos%28a%29+%7D++%5Ctimes++%5C+%5Ctan%28a%29%2B%5Ccot%28a%29+)
![= \frac{1}{ \cos(a) } \times \frac{ \sin(a) }{ \cos(a) } + \frac{ \cos(a) }{ \sin(a) } = \frac{1}{ \cos(a) } \times \frac{ \sin(a) }{ \cos(a) } + \frac{ \cos(a) }{ \sin(a) }](https://tex.z-dn.net/?f=+%3D+++%5Cfrac%7B1%7D%7B+%5Ccos%28a%29+%7D++%5Ctimes++%5Cfrac%7B+%5Csin%28a%29+%7D%7B+%5Ccos%28a%29+%7D++%2B++%5Cfrac%7B+%5Ccos%28a%29+%7D%7B+%5Csin%28a%29+%7D+)
![= \frac{1}{ \cos(a)} \times \frac{ \sin(a) \times \sin(a) }{ \cos(a) \times \sin(a) } + \frac{ \cos(a) \times \cos(a) }{ \sin(a) \times \cos(a) } = \frac{1}{ \cos(a)} \times \frac{ \sin(a) \times \sin(a) }{ \cos(a) \times \sin(a) } + \frac{ \cos(a) \times \cos(a) }{ \sin(a) \times \cos(a) }](https://tex.z-dn.net/?f=+%3D++%5Cfrac%7B1%7D%7B+%5Ccos%28a%29%7D+%5Ctimes++%5Cfrac%7B+%5Csin%28a%29+%5Ctimes++%5Csin%28a%29++%7D%7B+%5Ccos%28a%29++%5Ctimes++%5Csin%28a%29+%7D++%2B++%5Cfrac%7B+%5Ccos%28a%29+%5Ctimes++%5Ccos%28a%29++%7D%7B+%5Csin%28a%29+%5Ctimes++%5Ccos%28a%29++%7D+)
![= \frac{1}{ \cos(a) } \times \frac{ { \sin }^{2} (a)}{ \cos(a) \times\sin(a) } + \frac{ { \cos}^{2}(a) }{ \sin(a )\times \cos(a) } = \frac{1}{ \cos(a) } \times \frac{ { \sin }^{2} (a)}{ \cos(a) \times\sin(a) } + \frac{ { \cos}^{2}(a) }{ \sin(a )\times \cos(a) }](https://tex.z-dn.net/?f=+%3D++%5Cfrac%7B1%7D%7B+%5Ccos%28a%29+%7D++%5Ctimes+++%5Cfrac%7B+%7B+%5Csin+%7D%5E%7B2%7D+%28a%29%7D%7B+%5Ccos%28a%29+++%5Ctimes%5Csin%28a%29+%7D+%2B++%5Cfrac%7B+%7B+%5Ccos%7D%5E%7B2%7D%28a%29+%7D%7B+%5Csin%28a+%29%5Ctimes++%5Ccos%28a%29++%7D+)
–――――――― {making denominator equal}
![= \frac{1}{ \cos(a) } \times \frac{ { \sin }^{2} (a) + \cos ^{2}(a) }{ \sin(a) \times \cos(a) } = \frac{1}{ \cos(a) } \times \frac{ { \sin }^{2} (a) + \cos ^{2}(a) }{ \sin(a) \times \cos(a) }](https://tex.z-dn.net/?f=+%3D++%5Cfrac%7B1%7D%7B+%5Ccos%28a%29+%7D++%5Ctimes++%5Cfrac%7B+%7B+%5Csin+%7D%5E%7B2%7D+%28a%29+%2B+++%5Ccos+%5E%7B2%7D%28a%29+%7D%7B+%5Csin%28a%29+%5Ctimes++%5Ccos%28a%29++%7D+)
–――――――― {making denominator equal}
Tony9777:
nice
Similar questions