Prove that
sec thita + tan thita
1+ sin thita
1- sin thita
Answers
Answered by
2
Answer:
Prove that :-
→ (secθ - tanθ)² = \bf \frac{ 1-sin \theta }{1+sin \theta }
1+sinθ
1−sinθ
.
Solution :-
→ (sec θ - tan θ )².
⇒ (\bf \frac{1}{ cos \theta } - \frac{ sin \theta }{ cos \theta }
cosθ
1
−
cosθ
sinθ
)² .
⇒ ( \bf \frac{ 1 - sin \theta }{ cos \theta }
cosθ
1−sinθ
)² .
⇒ \bf\frac{{(1 - sin \theta })^{2}} {{cos}^{2} \theta} .
cos
2
θ
(1−sinθ)
2
.
⇒ \bf \frac{ ( 1 - sin \theta )(1 - sin \theta ) }{1 - {sin}^{2} \theta }
1−sin
2
θ
(1−sinθ)(1−sinθ)
⇒ \bf \frac{ \cancel{ ( 1 - sin \theta )} (1 - sin \theta ) }{ \cancel{ ( 1 - sin \theta ) } ( 1 + sin \theta ) }
(1−sinθ)
(1+sinθ)
(1−sinθ)
(1−sinθ)
⇒ (secθ - tanθ)² = \bf \frac{ 1-sin \theta }{1+sin \theta }
1+sinθ
1−sinθ
.
Hence, it is proved.
THANKS
#BeBrainly.
Similar questions