Math, asked by nirajakurra, 2 months ago

Prove that
sec thita + tan thita
1+ sin thita
1- sin thita​

Answers

Answered by riya3750
2

Answer:

Prove that :-

→ (secθ - tanθ)² = \bf \frac{ 1-sin \theta }{1+sin \theta }

1+sinθ

1−sinθ

.

Solution :-

→ (sec θ - tan θ )².

⇒ (\bf \frac{1}{ cos \theta } - \frac{ sin \theta }{ cos \theta }

cosθ

1

cosθ

sinθ

)² .

⇒ ( \bf \frac{ 1 - sin \theta }{ cos \theta }

cosθ

1−sinθ

)² .

⇒ \bf\frac{{(1 - sin \theta })^{2}} {{cos}^{2} \theta} .

cos

2

θ

(1−sinθ)

2

.

⇒ \bf \frac{ ( 1 - sin \theta )(1 - sin \theta ) }{1 - {sin}^{2} \theta }

1−sin

2

θ

(1−sinθ)(1−sinθ)

⇒ \bf \frac{ \cancel{ ( 1 - sin \theta )} (1 - sin \theta ) }{ \cancel{ ( 1 - sin \theta ) } ( 1 + sin \theta ) }

(1−sinθ)

(1+sinθ)

(1−sinθ)

(1−sinθ)

⇒ (secθ - tanθ)² = \bf \frac{ 1-sin \theta }{1+sin \theta }

1+sinθ

1−sinθ

.

Hence, it is proved.

THANKS

#BeBrainly.

Similar questions