Math, asked by ayushi8753, 10 months ago

Prove that √sec²∅ + Cos²∅ = tan ∅ + cos ∅.​

Answers

Answered by Anonymous
56

\huge\underline\mathrm{SOLUTION:-}

\mathsf { L.H.S =  \sqrt{ \sec {}^{2} (\theta) +  \cos \: es {}^{2} (\theta) } }

\mathsf { =  \sqrt{ \frac{1}{ \cos {}^{2} (\theta) }  +  \frac{1}{ \sin {}^{2} (\theta) } }  }

\mathsf {=  \sqrt{ \frac{ \sin {}^{2} (\theta) +  \cos {}^{2} (\theta)  }{ \sin {}^{2} (\theta). \cos {}^{2} (\theta)  } } }

\mathsf { = \sqrt{ \frac{1}{ \sin {}^{2} (\theta) . \cos {}^{2} (\theta) } } } [∵ Sin²∅ + Cos²∅ = 1]

\mathsf {=  \frac{1}{ \sin(\theta).  \cos(\theta) } }

\mathsf { =  \frac{ \sin {}^{2} (\theta) +  \cos {}^{2} (\theta)  }{ \sin(\theta). \cos(\theta)  }} [∵ 1 = Sin²∅ + Cos²∅]

\mathsf { =  \frac{ \sin {}^{2} (\theta) }{ \sin(\theta). \cos(\theta)  }  +  \frac{ \cos {}^{2} (\theta) }{ \sin(\theta). \cos(\theta)  } }

\mathsf {  = \frac{ \sin(\theta) }{ \cos(\theta) }  +  \frac{ \cos(\theta) }{ \sin(\theta) }}

\mathsf {=  \tan(\theta)  +  \cot(\theta)  = R.H.S}

  • Hence Proved.

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Similar questions