Math, asked by morphers, 11 months ago

prove that sec²A-cos²A= sin²A{sec²A+1}​

Answers

Answered by tarunzxt29092003
3

LHS=sec²A-cos²A

=1/cos²A-cos²A

=. 1-cos⁴A/cos²A

RHS=sin²A{1/cos²A+1}

=1-cos²A(1+cos²A/cos²A)

=. 1 - cos⁴A/cos²A. {by using (a+b)(a-b)=a²-b²}

=LHS ,hence proved

please mark it as brainliest

Answered by adityababan12345
2

Answer:

sec²A - cos²A = sin²A (sec²A + 1)

Taking LHS,

∵ sec²A = 1 + tan²A and cos²A = 1 - sin²A

⇒ 1 + tan²A - 1 + sin²A

⇒ tan²A + sin²A

∵ tan²A = sin²A/cos²A

⇒ sin²A/cos²A + sin²A

⇒ sin²A + sin²A.cos²A/cos²A

⇒ sin²A( 1 + cos²A)/cos²A

∵ sin²A = 1 - cos²A

⇒ (1 - cos²A)(1 + cos²A)/cos²A

∵ (a + b)(a - b) = (a² - b²)

⇒ 1 - cos⁴A/cos²A.....................(1)

Taking RHS,

⇒ sin²A (sec²A + 1)

∵sec²A = 1/cos²A

⇒ (1 - cos²A) (1/cos²A + 1)

⇒ {(1 - cos²A)(1 + cos²A)}/cos²A

⇒ {1 - cos⁴A}/cos²A.................................(2)

From (1) and (2), we come to know that LHS=RHS.

Hence, proved.

Similar questions