Prove that,
sec²A + cot² (90° - A) = 2 cosec² (90° - A) - 1
#NO SPAMS
#Cubingwitsk
Answers
Answered by
83
L.H.S. = sec²A + cot² (90° - A)
= (1 + tan²A) + [cosec² (90° - A) - 1],
using the identities
sec²θ - tan²θ = 1, cosec²θ - cot²θ = 1
= 1 + tan²A + cosec² (90° - A) - 1
= tan²A + cosec² (90° - A)
= (tanA)² + cosec² (90° - A)
= {cot (90° - A)}² + cosec² (90° - A),
since cot (90 - θ) = tanθ
= {cosec² (90° - A) - 1} + cosec² (90° - A),
using the identity
cosec²θ - cot²θ = 1
= 2 cosec² (90° - A) - 1
= R.H.S.
Hence, proved.
#
Cubingwitsk:
Well Done Bhaiya!
Answered by
83
♥️Hi there ♥️
sec²A + cot² (90° - A) = 2 cosec² (90° - A) - 1
From L.H.S
(Cot(90°-a)= tan A
(sec^2 A =tan^2A=1)
From R.H.S
(Cosec(90°- A) = secA
L.H.S = R.H.S
Hence proved !
Thanks !!
【In my ans a=A and in few places 90 = 90°】
sec²A + cot² (90° - A) = 2 cosec² (90° - A) - 1
From L.H.S
(Cot(90°-a)= tan A
(sec^2 A =tan^2A=1)
From R.H.S
(Cosec(90°- A) = secA
L.H.S = R.H.S
Hence proved !
Thanks !!
【In my ans a=A and in few places 90 = 90°】
Similar questions