prove that sec2A-tan2A = cot A+1/ cot A-1
Answers
Answered by
0
Step-by-step explanation:
sec2A - tan2A = cot A+1/ cot A-1
LHS = sec2A - tan2A =2, by using identity , 1+tan2A=sec2A,sec2A-tan2A =1.
LHS =1
RHS=cot A+1/cot A-1
cot A+1=cosA+1/sinA+1
cot A-1=cosA-1/sinA-1
cot A+1/cot A-1= cosA+1/sinA+1 *sinA-1/cosA-1
= -1/-1=1
LHS=RHS
hence proved that sec2A-tan2A=cot A+1/cot A-1.
Similar questions