Math, asked by nivruttikamble13, 8 months ago

prove that
sec²theta - cos ² theta = sin² theta ( sec²+ 1)​
plz give answer

Answers

Answered by mahak87891
2

hope it's helpful

plz mark me as brainlist

Attachments:
Answered by Anonymous
2

Answer:

 { \sec }^{2}  \theta - cos  {}^{2} \theta  = sin {}^{2}  \theta(sec  {}^{2} \theta + 1) \\  \\  \\  =  > sec {}^{2} \theta - (1 -  {sin}^{2}  \theta) \\  \\  =  >  \frac{1}{ {cos}^{2} \theta }   - (1 -   { \sin }^{2}  \theta) \\  \\  =  >  \frac{1 -  {cos}^{2} \theta +  {sin}^{2} \theta. {cos}^{2} \theta   }{ {cos}^{2} \theta } \\  \\  \\  =  >  \frac{ {sin}^{2}  \theta +  {sin}^{2} \theta. {cos}^{2} \theta  }{ {cos}^{2}  \theta}  \\  \\  \\  =  >  \frac{ {sin}^{2}  \theta(1 +  {cos}^{2}  \theta)}{ {cos}^{2}  \theta}  \\  \\  \\  =  >  {sin}^{2} ( \frac{1}{ {cos}^{2} \theta }  +  \frac{ {cos}^{2}  \theta}{ {cos}^{2} \theta } ) \\  \\  \\  =  >  {sin}^{2}  \theta( {sec}^{2}  \theta + 1) \:  \: proved...

please mark me brainlist ✔️✔️✔️✔️

Similar questions