prove that sec6 theta=tan6 theta+3tan2theta.sec2 theta+1
Answers
Step-by-step explanation:
Proof:-
We have to prove sec⁶θ = tan⁶θ +3tan²θ sec²θ+1
On taking LHS :
sec⁶ θ
It can be written as
=> (sec²θ)³
We know that
sec² A - tan² A = 1
=> sec² A = 1+tan² A
now,
(sec² θ)³
=> (1+tan² θ)³
It is in the form of (a+b)³
Where, a = 1 and b = tan² θ
We know that
(a+b)³ = a³+b³+3ab(a+b)
Now, (1+tan² θ)³
=>1³+(tan² θ)³+3(1)(tan² θ)(1+tan² θ)
=> 1+tan⁶ θ+3tan²θ(1+tan²θ)
=> 1+tan⁶θ +3tan²θ sec²θ
=> RHS
=> LHS = RHS
Therefore,
sec⁶θ = tan⁶θ +3tan²θ sec²θ+1
Hence, Proved.
Used Identities:-
→sec² A - tan² A = 1
→ (a+b)³ = a³+b³+3ab(a+b)
Question:-
Prove that: sec⁶θ = tan⁶θ + 3tan²θ sec²θ + 1.
Given:-
- sec⁶θ = tan⁶θ + 3tan²θ sec²θ + 1.
To Prove:-
- sec⁶θ = tan⁶θ + 3tan²θ sec²θ + 1.
Solution:-
From Trigonometric Identities we have,
sec²θ − tan²θ = 1.
On cubing both sides,
(sec²θ − tan²θ)³ = 1.
sec⁶θ − tan⁶θ − 3sec²θ tan²θ(sec²θ − tan²θ) = 1.
[Since, (a – b)³ = a³ – b³ – 3ab(a – b)].
sec⁶θ − tan⁶θ − 3sec²θ tan²θ = 1.
⇒ sec⁶θ = tan⁶θ + 3sec²θ tan²θ + 1.
Answer:-
⇒ sec⁶θ = tan⁶θ + 3sec²θ tan²θ + 1.
Hence, L.H.S. = R.H.S.
Hence, Proved.
Hope you have satisfied. ⚘