prove that secA(1-sinA)(secA+tanA)=1
Answers
Answered by
0
Answer:
Step-by-step explanation:
From LHS,
1/cosA(1-sinA)(1/cosA+sinA/cosA)
=>(1-sinA/cosA)(1+sinA/cosA)
=>(1-sinA)(1+sinA)/cos^2A
=>1-sin^2A/cos^2A
=>cos^2A/cos^2A
=>1=1
LHS=RHS
Answered by
0
Step-by-step explanation:
secA(1-sinA)(secA+tan A)
secA-sinAsecA(secA+tanA)
[secA= 1/cosA]
secA -sinA/cosA(secA+tanA)
(secA-tanA)(secA+tanA)
sec²A-tan²A=1
hence proved
Similar questions