Math, asked by MathMaster2005, 1 year ago

prove that secA(1-sinA)(secA+tanA)=1​

Answers

Answered by Anonymous
0

Answer:

Step-by-step explanation:

From LHS,

1/cosA(1-sinA)(1/cosA+sinA/cosA)

=>(1-sinA/cosA)(1+sinA/cosA)

=>(1-sinA)(1+sinA)/cos^2A

=>1-sin^2A/cos^2A

=>cos^2A/cos^2A

=>1=1

LHS=RHS

Answered by sambhavigupta30
0

Step-by-step explanation:

secA(1-sinA)(secA+tan A)

secA-sinAsecA(secA+tanA)

[secA= 1/cosA]

secA -sinA/cosA(secA+tanA)

(secA-tanA)(secA+tanA)

sec²A-tan²A=1

hence proved

Similar questions