Math, asked by Rahitya, 1 year ago

Prove that secA ( 1 - sinA ) ( secA + tanA ) = 1

Answers

Answered by Light1729
4
sec A(1-sin A)(sec A+tan A)
(1-sin A)(1+sin A)/(cos²A)=1

Note: Step 1 Convert secant and tangent in sine and cosine.

Step 2 (a-b)(a+b)=a²-b²

Also, 1-sin²A=cos²A
Answered by MizZFaNtAsY
0

LHS

secA(1-sinA)(secA+tanA)  \\  \\  =  \frac{1}{cosA} (1-sinA)(secA+tanA)  \\  \\ = ( \frac{1}{cosA} - \frac{ sinA}{cosA} )(secA+tanA)  \\  \\ = (secA-tanA)(secA+tanA) \\  \\  =  {sec}^{2} A -  {tan}^{2} A\\  \\  = 1

RHS

=1

LHS=RHS

Similar questions