prove that secA(1-sinA) (secA+tanA)=1.
Answers
Answered by
2
Step-by-step explanation:
sin^A + cos^A = 1 and therefore cos^2A = 1 - sin^2A
secA =1/cosA
tan A = sinA/cosA
secA(1 - sinA)(secA + tanA) works out to
[(1/cosA)(1 - sinA) (1/cosA+sinA/cosA)]
= (1-sinA)/cosA (1 + sinA)/cosA
(1-sinA)(1+sinA)/cos^2 A
(1 - sin^2 A) / cos^2 A --------> for reasons given above
cos^2 A / Cos^2 A
=1
Similar questions