Prove that:
SecA+1+tanA/SecA+1+tanA=secA+tanA
Answers
Answer:
To Prove:
\frac{\tan A+\sec A-1}{\tan A-\sec A+1}=\frac{1+\sin A}{\cos A}
tanA−secA+1
tanA+secA−1
=
cosA
1+sinA
Solution:
\frac{\tan A+\sec A-1}{\tan A-\sec A+1}=\frac{\tan A+\sec A-\left(\sec ^{2} A-\tan ^{2} A\right)}{\tan A-\sec A+1}
tanA−secA+1
tanA+secA−1
=
tanA−secA+1
tanA+secA−(sec
2
A−tan
2
A)
\left[\because 1+\tan ^{2} A=\sec ^{2} A \Rightarrow \sec ^{2} A-\tan ^{2} A=1\right][∵1+tan
2
A=sec
2
A⇒sec
2
A−tan
2
A=1]
=\frac{\tan A+\sec A-\{(\sec A-\tan A)(\sec A+\tan A)\}}{\tan A-\sec A+1}=
tanA−secA+1
tanA+secA−{(secA−tanA)(secA+tanA)}
Now, take(\tan A+\sec A)(tanA+secA) as a common term, we get
=\frac{(\tan A+\sec A)(1-\sec A+\tan A)}{\tan A-\sec A+1}=
tanA−secA+1
(tanA+secA)(1−secA+tanA)
=\frac{(\tan A+\sec A)(\tan A-\sec A+1)}{\tan A-\sec A+1}=
tanA−secA+1
(tanA+secA)(tanA−secA+1)
=\tan A+\sec A=tanA+secA
=\frac{\sin A}{\cos A}+\frac{1}{\cos A}=
cosA
sinA
+
cosA
1
=\frac{1+\sin A}{\cos A}=
cosA
1+sinA
∴ Hence Proved