PROVE THAT: seca -cos^2a-sina tana-cosa+1=sin^2a
a=alpha
Answers
Answered by
1
this may help u.............
Attachments:
Answered by
2
seca-cos^2a-sinatana-cosa+1
=seca-cosa+1-cos^2a-sinatana
=1/cosa -cosa+(1-cos^2a)-sinatana(since seca=1/cosa)
=(1-cos^2a)/cosa+sin^2a-sinatana
=sin^2a/cosa+sin^2a-sinatana
==sina×sina/cosa+sin^2a-sinatana
=sinatana+sin^2a-sinatana(since sina/cosa=tana)
=sin^2a
=seca-cosa+1-cos^2a-sinatana
=1/cosa -cosa+(1-cos^2a)-sinatana(since seca=1/cosa)
=(1-cos^2a)/cosa+sin^2a-sinatana
=sin^2a/cosa+sin^2a-sinatana
==sina×sina/cosa+sin^2a-sinatana
=sinatana+sin^2a-sinatana(since sina/cosa=tana)
=sin^2a
Similar questions