Math, asked by kharender281, 9 months ago

prove that (secA-cosA)(cotA+tanA)=tanA.secA​

Answers

Answered by Anonymous
5

\red\bigstar Explanation \red\bigstar

\leadsto Given:-

LHS:-

(secA-cosA)(cotA+tanA)

(\dfrac{1}{cosA} - cosA)(\dfrac{cosA}{sinA} + \dfrac{sinA}{cosA})

(\dfrac{(1-cos²A)}{cosA})(\dfrac{(sin²A + cos²A)}{sinAcosA})

We know that

sin²A + cos²A = 1

Therefore,

sin²A = 1 - cos²A

(\dfrac{(sin²A)}{cosA})(\dfrac{1}{sinAcosA})

(\dfrac{(sinA)}{cosA})(\dfrac{1}{cosA})

We know that tanA = \dfrac{(sinA)}{cosA}

We also know that secA = \dfrac{1}{cosA}

LHS = RHS

Therefore,

(secA - cosA)(cotA + tanA) = tanA.secA

\leadsto Formulas related to Trigonometry:-

tanA = \dfrac{sinA}{cosA}

cotA = \dfrac{cosA}{sinA}

cotA = \dfrac{1}{tanA}

secA = \dfrac{1}{cosA}

cosecA = \dfrac{1}{sinA}

sin²A + cos²A = 1

1 + tan²A = sec²A

1 + cot²A = cosec²A

sin(A + B) = sinAcosB + cosAsinB

sin(A - B) = sinAcosB - cosAsinB

cos(A + B) = cosAcosB - sinAsinB

cos(A - B) = cosAcosB + sinAsinB

tan(A + B) = \dfrac{(tanA + tanB)}{1 - tanAtanB}

tan(A - B) = \dfrac{(tanA - tanB)}{1 + tanAtanB}

cot(A + B) = \dfrac{(cotAcotB - 1)}{(cotA + cotB)}

cot(A - B) = \dfrac{(cotAcotB + 1)}{(cotA -  cotB)}

sin2A = 2sinAcosA

cos2A = cos²A - sin²A

tan2A = \dfrac{2tanA}{1 - tan²A}

cot2A = \dfrac{(cot²A - 1)}{2cotA}

sin3A = 3sinA - 4sin³A

cos3A = 4cos³A - 3cosA

tan3A = \dfrac{3tanA - tan³A}{1 - 3tan²A}

Similar questions