prove that (secA-cosA)(cotA+tanA)=tanA.secA
Answers
Answered by
5
Explanation
Given:-
LHS:-
(secA-cosA)(cotA+tanA)
( - cosA)(
+
)
()(
)
We know that
sin²A + cos²A = 1
Therefore,
sin²A = 1 - cos²A
()(
)
()(
)
We know that tanA =
We also know that secA =
LHS = RHS
Therefore,
(secA - cosA)(cotA + tanA) = tanA.secA
Formulas related to Trigonometry:-
tanA =
cotA =
cotA =
secA =
cosecA =
sin²A + cos²A = 1
1 + tan²A = sec²A
1 + cot²A = cosec²A
sin(A + B) = sinAcosB + cosAsinB
sin(A - B) = sinAcosB - cosAsinB
cos(A + B) = cosAcosB - sinAsinB
cos(A - B) = cosAcosB + sinAsinB
tan(A + B) =
tan(A - B) =
cot(A + B) =
cot(A - B) =
sin2A = 2sinAcosA
cos2A = cos²A - sin²A
tan2A =
cot2A =
sin3A = 3sinA - 4sin³A
cos3A = 4cos³A - 3cosA
tan3A =
Similar questions