prove that (secA-cosecA) (1+tanA+cotA)= tanASecA-cotAcosecA
Answers
Answered by
1
Answer:
Please mark BRAINLIEST...
Attachments:
Answered by
1
(secA - cosecA)(1+tanA+cotA)
= secA + tanA.secA + cotA.secA - cosecA - cosecA.tanA - cosecA.cotA
= secA + sinA.sec^2A + cosecA - cosecA - secA - cosec^2A.cosA
= sinA/cos^2A - cosA/sin^2A
= (sinA/cosA)secA - (cosA/sinA)cosecA
= tanA.secA - cotA.cosecA ( RHS )
Hence proved ...
Similar questions