Math, asked by SayidMuhamedSulthan, 1 year ago

Prove that (secA/secA+1)+(secA/secA-1)=2cosec^2A?

Answers

Answered by Abhi213101
89
see if u can get that...
Attachments:
Answered by amirgraveiens
25

Proved below.

Step-by-step explanation:

Given:

(\frac{secA}{secA+1} )+(\frac{secA}{secA-1} )=2cosec^2A

LHS = (\frac{secA}{secA+1} )+(\frac{secA}{secA-1})

=\frac{sec^2A-secA+sec^2A+secA}{(secA+1)(secA-1)}

=\frac{2 sec^2A}{sec^2A−1}

=\frac{2 sec^2A}{tan^2A}          [∵ tan^2A=sec^2A-1]

=\frac{2}{cos^2} \times \frac{cos^2A}{sin^2A}      [sec^2A=\frac{1}{cos^2A},tan^2A=\frac{sin^2A}{cos^2A}]

=\frac{2}{sin^2A}

=2cosec^2A                        [∵ \frac{1}{sin^2A}=cosec^2A]

=RHS

Hence proved.

Similar questions