Math, asked by roshni3894, 8 months ago

Prove that (secA/secA+1)+(secA/secA-1)=2cosec^2A​

Answers

Answered by MaIeficent
13

Step-by-step explanation:

\bf\underline{\underline{\red{To\:Prove:-}}}

  • \rm \dfrac{secA}{secA + 1}  +  \dfrac{secA}{secA - 1}  = 2 {cosec}^{2} A

\bf\underline{\underline{\green{Proof:-}}}

Let us prove by simplifying LHS.

\rm LHS = \dfrac{secA}{secA + 1}  +  \dfrac{secA}{secA - 1}

\rm = \dfrac{secA (secA - 1) + secA (secA  +  1)}{(secA + 1)(secA - 1)}

\rm = \dfrac{sec^{2} A  - secA  + sec ^{2} A +  secA  }{(secA + 1)(secA - 1)}

\rm = \dfrac{sec^{2} A    \:  \: \cancel{- secA}  + sec ^{2} A  \:  \:  \cancel{+  secA}  }{(secA)^{2} -  {(1)}^{2} }

\rm =  \dfrac{2sec^{2}A }{sec^{2}A -  1 }

\rm =  \dfrac{2sec^{2}A }{tan^{2}A  }  \:  \:  \:  \:  \: \:  \:  \:   \:  \: \: \: \: \: \: \: \bigg( \because {sec}^{2} A - 1 =  {tan}^{2} A \bigg)

\rm =  \dfrac{2sec^{2}A }{ \:  \:  \:  \:  \:  \dfrac{sin^{2}A}{cos^{2}A} \:  \:  \:  \:    }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigg( \because tan^{2}A  =\dfrac{sin^{2}A}{cos^{2}A} \bigg)

\rm =  \dfrac{2sec^{2}A }{   sin^{2}A \: sec^{2}A   }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigg( \because  \dfrac{1}{cos^{2}A} = sec^{2}A \bigg)

\rm =  \dfrac{2 }{  \: sin^{2}A    \: }   \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \: \: \: \: \: \:\bigg( \because \dfrac{1}{sin^{2}A}  =cosec^{2}A  \bigg)

\rm = 2 {cosec}^{2} A = RHS

LHS = RHS

Hence Proved

Similar questions