Prove that (secA + tan A)? =
cosec A+1 /cosec A- 1
Answers
Answered by
1
Step-by-step explanation:
LHS :
(secA + tanA)²
( 1/cosA + sinA/cosA)²
(1 + sinA)² / cos²A
we know that ,
cos²A = 1 - sin²A
(1+sinA) (1 + sinA) / {1 - sin²A}
Also ,
1 - sin²A = (1+sinA) (1 - sinA) [ ∵ a² - b² = (a+b) (a - b) ]
(1+sinA) (1 + sinA) / (1+sinA) (1 - sinA)
(1 + sinA ) gets cancelled on numerator and denominator ,
=> 1 + sinA / 1 - sinA
sinA = 1/cosecA
=> 1 + ( 1/cosecA) / [ 1 - (1/cosecA) ]
=> \frac{ \frac{cosecA + 1}{cosecA} }{ \frac{cosecA - 1}{cosecA} }
cosecA
cosecA−1
cosecA
cosecA+1
=> cosec A gets cancelled ,on both sides ,
hence ,
LHS becomes ,
cosecA + 1/cosecA - 1
Similar questions