prove that secA-tanA=1
Answers
Answered by
0
Answer:
sec²A-tan²A=1
Step-by-step explanation:
Prove that sec²A-tan²A=1
LHS = sec²A-tan²A
RHS = 1
Lets solve LHS
LHS
= sec²A-tan²A
SecA = 1/CosA
=> sec²A = 1/Cos²A
Tan A = SinA/CosA
=> Tan²A = Sin²A/Cos²A
putting these values
LHS
= 1/Cos²A - Sin²A/Cos²A
= (1 -Sin²A)/Cos²A
Sin²A + Cos²A = 1 => 1 -Sin²A = Cos²A
= Cos²A/Cos²A
= 1
= RHS
QED
Proved
Similar questions