prove that (secA+tanA-1)(secA-tanA+1)=2tanA
Answers
Answered by
3
LHS :
(secA + tanA - 1) ( secA - tanA +1)
= sec2A - secAtanA + secA + secAtanA - tan2A +tanA - secA + tanA - 1
= sec2A - tan2A + 2tanA - 1
= 1 + 2tanA - 1
= 2tanA
LHS = RHS
hence proved
(secA + tanA - 1) ( secA - tanA +1)
= sec2A - secAtanA + secA + secAtanA - tan2A +tanA - secA + tanA - 1
= sec2A - tan2A + 2tanA - 1
= 1 + 2tanA - 1
= 2tanA
LHS = RHS
hence proved
Answered by
3
Hope it helps u..........
Attachments:
Similar questions
English,
7 months ago
Social Sciences,
1 year ago