prove that secA+tanA= 1/SecA-TanA
Answers
Answered by
1
1/secA-tanA =secA+tanA
----
Multiply both sides by secA-tanA to get:
1 = [sec^2(A)-tan^2(A)]
---
1 = [1/cos^2 - sin^2/cos^2]
----
1 = [1-sin^2]/cos^2
----
1 = [cos^2/cos^2]
-----
1 = 1
-----------------
Cheers,
Stan H.
----
Multiply both sides by secA-tanA to get:
1 = [sec^2(A)-tan^2(A)]
---
1 = [1/cos^2 - sin^2/cos^2]
----
1 = [1-sin^2]/cos^2
----
1 = [cos^2/cos^2]
-----
1 = 1
-----------------
Cheers,
Stan H.
Answered by
1
LHS = 1sec A + tan A=1sec A + tan A × sec A − tan Asec A − tan A=sec A − tan Asec2A − tan2A=sec A − tan A1=sec A + tan A=RHS
Similar questions