Math, asked by hjnehapruchu0ngrt, 1 year ago

Prove that (secA+tanA)(1-sinA)=cosA

Answers

Answered by idiotme
52
LHS:
((1/cosA)+(sinA/cosA))*(1-sinA)
=((1+sinA)(1-sinA))/cosa
=1-sin^2(A)/cosA
=cos^2(A)/cosA
=cosA
=RHS
Answered by pinquancaro
55

Answer and Explanation:

To prove : (\sec A+\tan A)(1-\sin A)=\cos A

Proof :

Taking LHS,

LHS=(\sec A+\tan A)(1-\sin A)

Write, \sec A=\frac{1}{\cos A}\ , \tan A=\frac{\sin A}{\cos A}

LHS=(\frac{1}{\cos A}+\frac{\sin A}{\cos A})(1-\sin A)

LHS=(\frac{1+\sin A}{\cos A})(1-\sin A)

LHS=\frac{(1+\sin A)(1-\sin A)}{\cos A}

LHS=\frac{1^2-\sin^2 A}{\cos A}

LHS=\frac{1-\sin^2 A}{\cos A}

LHS=\frac{\cos^2 A}{\cos A}

LHS=\cos A

LHS=RHS

Hence proved.

Similar questions