prove that: (secA+tanA)(1-sinA)=cosA
Answers
Answered by
5
Answer:
L. H. S.
=> (1/cos A + Sin A / cos A) ( 1 - Sin A)
=> [ (1 + sin A ) / cos A] ( 1 - Sin A)
=> ( 1 - sin^2 A) / cos A
=> Cos^2 A / cos A
=> Cos A
=> R. H. S.
Hence, Proved.
kennedybro08580:
thank you so much
Answered by
5
Answer:
LHS = RHS = cosA
Step-by-step explanation:
LHS = (secA + tanA) (1 - sinA)
= [(1/cosA) + (sinA/cosA)] × (1- sinA)
= [(1+ sinA)/cosA] (1- sinA)
= [(1+ sinA) (1- sinA)/cosA]
= 1^2 - sin^2A/cosA
[°.° a^2 - b^2 = (a + b)(a - b)]
= 1 - sin^2A/cosA
= cos^2A/cosA
= cosA = RHS
.°. LHS = RHS
Hence, it is proved.
____________________
Similar questions
History,
6 months ago
Math,
6 months ago
Math,
11 months ago
Social Sciences,
11 months ago
History,
1 year ago