Math, asked by abhayjoseph2002, 3 days ago

Prove that
secA- tanA = 1- tan(A/2)/1+tan (A/2)​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Consider LHS

\rm \: secA - tanA \\

\rm \: =  \: \dfrac{1}{cosA}  - \dfrac{sinA}{cosA}  \\

\rm \: =  \: \dfrac{1 - sinA}{cosA}   \\

can be further rewritten as

\rm \: =  \: \dfrac{1 - cos\bigg(\dfrac{\pi}{2}  - A\bigg) }{sin\bigg(\dfrac{\pi}{2}  - A\bigg)}   \\

Let assume that

\boxed{\sf{  \: \:  \: \dfrac{\pi}{2}  - A \:  =  \: x \:  \: }} \\

So, above expression can be rewritten as

\rm \: =  \: \dfrac{1 - cosx}{sinx}  \\

\rm \: =  \: \dfrac{2 {sin}^{2}\dfrac{x}{2}  }{2 \: sin\dfrac{x}{2} \: cos\dfrac{x}{2} }  \\

\rm \: =  \: tan\dfrac{x}{2} \\

On substituting the value of x, we get

\rm \: =  \: tan\bigg(\dfrac{\pi}{4}  - \dfrac{A}{2} \bigg) \\

\rm \: =  \: \dfrac{tan\dfrac{\pi}{4}  - tan\dfrac{A}{2} }{1 + tan\dfrac{\pi}{4} \:  \: tan\dfrac{A}{2}}  \\

\rm \: =  \: \dfrac{1  - tan\dfrac{A}{2} }{1 + 1 \times  \:  \: tan\dfrac{A}{2}}  \\

\rm \: =  \: \dfrac{1  - tan\dfrac{A}{2} }{1 +   \: tan\dfrac{A}{2}}  \\

Hence,

 \\ \rm\implies \:\boxed{\sf{  \:\rm \: secA - tanA=  \: \dfrac{1  - tan\dfrac{A}{2} }{1 +   \: tan\dfrac{A}{2}} \: }}  \\  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formulae Used :-

\boxed{\sf{  \: \: sin2A = 2sinAcosA \:  \: }} \\

\boxed{\sf{  \: \: cos2A  = 1 -  {2sin}^{2}A \:  \: }} \\

\boxed{\sf{  \: \: tan(x - y) =  \dfrac{tanx - tany}{1 + tanx \: tany}  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\boxed{\sf{  \: \: cos2A =  {2cos}^{2}A - 1 =  {cos}^{2}A -  {sin}^{2}A \: }} \\

\boxed{\sf{  \: \: sin2A \:  =  \:  \frac{2tanA}{1 +  {tan}^{2} A}  \:  \: }} \\

\boxed{\sf{  \: \: cos2A \:  =  \:  \frac{1 -  {tan}^{2} A}{1 +  {tan}^{2} A}  \:  \: }} \\

\boxed{\sf{  \: \: tan2A \:  =  \:  \frac{2tanA}{1 -   {tan}^{2} A}  \:  \: }} \\

\boxed{\sf{  \: \: sin3A = 3sinA \:  -  \:  {4sin}^{3}A \:  \: }} \\

\boxed{\sf{  \: \: cos3A =  {4cos}^{3}A - 3cosA \:  \: }} \\

\boxed{\sf{  \: \: tan3A =  \frac{3tanA -  {tan}^{3}A }{1 -  {3tan}^{2} A}  \: }} \\

Answered by MathTeacher029
1

⟹ secA−tanA= 

−tan2A

1+tan2 A1

Similar questions