Prove that : secA + tanA - 1/tanA - secA + 1 =1 - sinA/cos A= cos A / 1 -sinA
Answers
We have to prove that
(secA + tanA - 1)/(tanA - secA + 1) = (1 + sinA)/cosA = cosA/(1 - sinA)
solution : we know, sec²A - tan²A = 1
⇒(secA - tanA)(secA + tanA) = 1 ......(1)
LHS = (secA + tanA - 1)/(tanA - secA + 1)
= {secA + tanA - (sec²A - tan²A)}/(tanA - secA + 1) [ from equation (1) . ]
= {secA + tanA - (secA + tanA)(secA - tanA)}/(tanA - secA + 1)
= {(secA + tanA)(1 - secA + tanA)}/(tanA - secA + 1)
= (secA + tanA)
= 1/cosA + sinA/cosA
= (1 + sinA)/cosA .......(2)
again, (1 + sinA)/cosA = (1 + sinA)/sinA × (1 - sinA)/(1 - sinA)
= (1 + sinA)(1 - sinA)/cosA(1 - sinA)
= (1 - sin²A)/cosA(1 - sinA)
= cos²A/cosA(1 - sinA)
= cosA/(1 - sinA) ........(3)
from equations (2) and (3) we get,
(secA + tanA - 1)/(tanA - secA + 1) = (1 + sinA)/cosA = cosA/(1 - sinA)
[ hence proved ]