Math, asked by shruthissb, 1 year ago

prove that (secA-tanA^2)+1/cosecA(secA-tanA)=2tanA

Answers

Answered by ravi34287
49
1 + (sec^2 A - 2secA tanA + tan^2 A) / cosecA ( secA - tanA) = 
(1 + tan^2 A) + sec^2 A - 2secA tanA / cosecA ( secA - tanA) = 
sec^2 A + sec^2 A - 2secAtanA / cosecA ( secA - tanA) = 
2 sec^2 A - 2 secAtanA / cosecA ( secA - tanA) 
2 sec A (secA - tanA) / cosecA ( secA - tanA) 
= 2 sec A / cosecA = 2 tan A
Answered by kvnmurthy19
20
\color{green}{answer}

&lt;b&gt;{1 + (sec^2 A - 2secA tanA + tan^2 A) / cosecA ( secA - tanA) = <br />(1 + tan^2 A) + sec^2 A - 2secA tanA / cosecA ( secA - tanA) = <br />sec^2 A + sec^2 A - 2secAtanA / cosecA ( secA - tanA) = <br />2 sec^2 A - 2 secAtanA / cosecA ( secA - tanA) <br />2 sec A (secA - tanA) / cosecA ( secA - tanA) <br />= 2 sec A / cosecA = 2 tan A}
Similar questions