Prove that :- (secA-tanA)^2(1+sin A) = 1-sin A
Answers
Answer:
LHS = RHS
True
Step-by-step explanation:
sec A = 1/cos A
tan A= sin A / CosA
Well we can write LHS :
( 1/cos A - sin A / Cos A)² ( 1+ Sin A)
combine the fraction
(1 - Sin A/cos A)² (1+sin A)
(1-sin A)²/ Cos² A ( 1 + Sin A)
Mulitply fractions
(1-sin A)²(1+ Sin A) / cos² A
By pythagoras identity:
cos ² A + Sin² x = 1
Cos² A = 1 - Sin ² A
We can write : 1 - sin² A instead of cos ² A
(1- sin A)²(1+sin A) / 1 - Sin² A
Factors of 1 - Sin²A : (1+sin A) ( 1 - SinA)
((1- Sin A)² (1+sin A))/ ((1+sinA)(1-sin A)
cancell common facto 1+sinA
(1-sin A)²/ ( 1- Sin A)
cancel comman factor : 1-sinA
I Showed that both sides are equal.
Mark me brainliest
Answer:
Step-by-step-explanation:
We have given a trigonometric equation.
We have to prove that equation.
The given trigonometric equation is
Now,