Math, asked by siddhi00735, 5 months ago

prove that (secA- tanA)^2=1+sinA/1-sinA​

Answers

Answered by sivapriya032020
0

Answer:

(secA- tanA)2

Step-by-step explanation:

answer in the pic

Attachments:
Answered by sandy1816
0

Answer:

(secA { - tanA})^{2}  \\  \\  = ( \frac{1}{cosA}  -  \frac{sinA}{cosA} ) ^{2}  \\  \\  =  \frac{( {1 - sinA})^{2} }{ {cos}^{2} A}  \\  \\  =  \frac{( {1 - sinA})^{2} }{1 -  {sin}^{2} A}  \\  \\  =  \frac{1 - sinA}{1 + sinA}

Similar questions