prove that: (secA+ tanA)^2=
(Cosec A +1)/(CaseA-1)
Answers
Answered by
2
Step-by-step explanation:
(secA+tanA)^2
it is in the form of
(a+b)^2=a^2+b^2+2ab
sec^2A+tan^2A+2secAtanA
1/cos^2A+sin^2A/cos^2A+2sinA/cos^2A
(1+sin^2A+2sinA)/cos^2A
1+sin^2A+2sinA is in the form of (a+b)^2
(1+sinA)^2/(cos^2A)
(1+sinA)(1+sinA)/(1-sin^2A)
(1+sinA)(1+sinA)/(1+sinA)(1-sinA)
sinA can be written as 1/cosecA
(1+1/cosecA)/(1-1/cosecA
therefore (cosecA+1)/(cosecA-1)
(secA+tanA)^2=(cosecA+1)/(cosec-1)
Similar questions