Math, asked by sureshaggarwal7464, 9 months ago

prove that secA - tanA/secA + tanA = 1 - 2 secA tanA + 2 tan^2 A

Answers

Answered by ravibharathi22
1

Answer:

Hence proved

Step-by-step explanation:

Attachments:
Answered by sandy1816
0

Answer:

\frac{secA - tanA}{secA + tanA}  \\  \\  =  \frac{secA - tanA}{secA + tanA}  \times  \frac{secA - tanA}{secA - tanA}  \\  \\  =  \frac{( {secA - tanA})^{2} }{ {sec}^{2}A -  {tan}^{2} A }  \\  \\  = ( {secA - tanA})^{2}  \\  \\  =  {sec}^{2} A +  {tan}^{2} A - 2secAtanA \\  \\  = 1 +  {tan}^{2} A+  {tan}^{2} A - 2secAtanA \\ \\ =1+2{tan}^{2}A-2secAtanA

Similar questions