Math, asked by indusingh11798, 1 month ago

prove that secA+tanA/secA-tanA= 1+2sec A×tanA+2tan²A please be fast​

Answers

Answered by abhi569
2

 \sf{Multiply \:  and \:  divide  \: by \:  secA + tanA}

 \implies  \sf{  \frac{secA + tanA}{ secA  -  tanA} \times  \frac{secA + tanA}{secA + tanA}} \\  \\  \implies \sf{ \frac{(secA + tanA) {}^{2} }{(secA  - tanA)(secA + tanA)} } \\  \\ \implies \sf{ \frac{(secA + tanA) {}^{2} }{sec {}^{2} A  - tan {}^{2} A} }

\implies \sf{ \frac{sec {}^{2} A + tan {}^{2} A + 2secAtanA}{1}} \\  \\  \implies \sf{(1  + tan {}^{2} A) + tan {}^{2} A + 2secAtanA } \\  \\   \implies\sf{1 + 2tan {}^{2} A + 2secAtanA}

 \sf{Used  \: trigonometric \:  properties: }

• sec²A - tan²A = 1

• sec²A = 1 + tan²A

Similar questions