Math, asked by adashikmahmaud71, 6 months ago

prove that,secA-tanA/secA+tanA=cos^2A/(1+sinA)^2​

Answers

Answered by Anonymous
11

 \frac{ \sec A -  \tan A  }{ \sec A +  \tan A }  =  \frac{ { \cos}^{2} A}{ {(1 +  \sin A) }^{2} }

L.H.S,

 \frac{ \sec A -  \tan A  }{ \sec A +  \tan A }

 =  \frac{ \frac{1}{ \cos A  }  -  \frac{  \sin A  }{ \cos A } }{\frac{1}{ \cos A  }   +  \frac{  \sin A  }{ \cos A }}

 =  \frac{ \frac{1 -  \sin A }{ \cos A } }{\frac{1 +   \sin A }{ \cos A} }

 =  {\frac{1 -  \sin A }{ \cos A}} \times   \frac{ \cos A }{1 +  \sin A }

 =  \frac{ 1 -  \sin A }{1  +   \sin A}

 =  \frac{(1 -  \sin A)(1  +   \sin A)}{(1  +   \sin A)(1  +   \sin A)}

 =  \frac{1 -  { \sin }^{2}  A}{ {(1 +  \sin A )}^{2} }

 = \frac{ { \cos}^{2} A}{ {(1 +  \sin A) }^{2} }

⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀[ as 1-sin²A = cos²A]

= R.H.S

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀[hence proved]

Similar questions