Math, asked by suraj5912, 10 months ago

Prove that secA - tanA.sinA

Answers

Answered by sandy1816
3

Step-by-step explanation:

secA-tanAsinA

=1/cosA-sin²A/cosA

=1-sin²A/cosA

=cos²A/cosA

=cosA

Answered by Anonymous
2

Solution

LHS

= Sec A - tan A . Sin A

 \frac{1}{cos \: a}  -  \frac{sin \: a}{cos \: a}  \times sin \: a

 \frac{1}{cos \: a}  -    \frac{ {sina}^{2} }{cos \: a}  \\  \frac{1 -  {sin}^{2}a }{cos \: a}

We know that

  • Sin² a + Cos²a = 1
  • cos²a = 1-sin²a

So ,

 \frac{ {cos}^{2} a}{cos \: a}

\boxed{\huge{=cos\:a}} RHS

Hence Proved !!

__________________________

───── ❝ TheEnforceR ❞ ─────

Mark as Brainliest !! ✨✨

Similar questions