Prove that:
sechA (1-cosh^2 A) + coshA (1-sech^2 A) =0
Answers
Answered by
0
Explanation:
secA (1-cos²A) + cosA (1-sec²A) = 0
L.H.S.
secA × sin²A + cosA × -tan²A (∵ 1-cos²A = sin²A and -tan²A = 1-sec²A)
sin²A/cosA + cosA × -sin²A/cos²A (∵ secA = 1/cosA and tanA = sinA/cosA
sin²A/cosA - sin²/cosA ( cosA and -sin²A/cos²A here cos²A and cosA get canceled and we get -sin²A/cosA)
(sin²A - sin²A)/cosA
0 =R.H.S.
Please mark as brain list
Similar questions
Science,
2 months ago
English,
2 months ago
Math,
5 months ago
Social Sciences,
5 months ago
English,
11 months ago