prove that (secQ+tanQ)=cosecq+1/cosecq-1
Answers
Answered by
0
Step-by-step explanation:
taking LHS
(secq+tanq)
=(1 /cosq+sinq/cosq)
=1+sinq
cosq
we have to square
=(1+sin)^2
cos2q
=(1+sinq)(1+sinq)
1-sin2q
=(1+sinq)(1+sinq)
(1+sinq)(1-sinq)
=(1+sinq)
(1-sinq)
taking RHS
cosecq+1
cosecq-1
=1+sinq/sinq
1-sinq/sinq
=1+sinq
1-sinq
LHS = RHS
hence proved
Similar questions