Math, asked by proudtobeanindian87, 9 months ago

Prove that Sectheta - tantheta +1 / Sectheta + tantheta +1 = 1 - Sintheta/costheta​

Answers

Answered by pulakmath007
2

\huge\boxed{\underline{\underline{\green{Solution}}}} </p><p>

 \displaystyle \:  \frac{ (sec  \theta  - tan \theta  + 1 \: )}{(  sec \theta +tan \theta +  1\: )}

=  \displaystyle \: \frac{ (sec \theta  -  tan \theta  +  sec²\theta-  tan²\theta}{ (  sec \theta +tan \theta +  1\: )}

=  \displaystyle \: \frac{[(sec \theta  -  tan \theta)  +  (sec \theta+tan \theta) (sec \theta - tan \theta)}{ (  sec \theta +tan \theta +  1\: )}

=  \displaystyle \: \frac{(sec\theta  -  tan \theta)(  sec \theta +tan \theta +  1\: ) }{( sec \theta +tan \theta +  1\: )}

  \displaystyle \:= (sec \theta   -  tan \theta \: )

  \displaystyle \: =  \frac{( 1  -  sin \theta ) }{cos \theta}

</p><p></p><p>\displaystyle\textcolor{red}{Please \:  Mark \:  it  \: Brainliest}</p><p>

Answered by sandy1816
1

 \frac{sec \theta - tan \theta + 1}{sec \theta + tan \theta + 1}  \\  \\  =  \frac{(sec \theta - tan \theta) + ( {sec}^{2} \theta -  {tan}^{2}   \theta)}{sec \theta + tan \theta + 1}  \\  \\  =  \frac{(sec \theta - tan \theta)(1 + sec \theta + tan \theta)}{1 + sec \theta + tan \theta}  \\  \\  = sec \theta - tan \theta \\  \\  =  \frac{1 - sin \theta}{cos \theta}

Similar questions