prove that: (see the attachment)
solve step by step
Answers
⠀⠀ || ✪✪ Prove.✪✪ ||
Take L.H.S.
tan A /(1-cot A) + cot A /(1-tan A)
( change quantity )
★ Sin A / Cos A = tan A
★ Cos A / Sin A = Cot A
= (sin A / Cos A )/(1-cos A/Sin A) + (cos A/Sin A )/(1- sin A/ cos A)
= sin² A /cos A(Sin A - Cos A) - Cos² A/sin A(sin A - cos A)
= (Sin³ A - Cos³ A)/sin A Cos A(Sin A - Cos A)
= ( Sin A - Cos A)(Sin² A + Cos² A + Sin A Cos A)/sin A Cos A(Sin A - Cos A)
( eliminate Sin A - Cos A from Denominator and numerator )
= ( sin² A + Cos² A + Sin A Cos A )/ Sin A cos A
= (1 + Sin A Cos A)/ Sin A Cos A
= (1/Sin A Cos A) + (Sin A Cos A/ Sin A Cos A)
= (1/Sin A ) × (1/ Cos A) + (Sin A Cos A/ Sin A Cos A)
= sec A Cosec A + 1
= R.H.S.
That's proved.
_____________________
Use Formula
★ (a³-b³) = (a-b)(a²+b²+ab)
★ ( 1/ Sinx ) = Cosec x
★ ( 1/Cos x ) = Sec x
★ sin² x + Cos² x = 1
_____________________
HEY MATE YOUR ANSWER IS HERE...
BY TAKING LHS
NOW BY TRIGNOMATERIC RATIOS
HENCE ,
NOW
BY SOLVING IT FURTHER WE GET
THEN ,
BY STANDARDIZED FORM ( taking - as common)
Now
NOW BY IDENTITY
a³ - b³ = ( a - b ) ( a² + b² + ab )
let a = sin a
let b = cos a
by applying identity
AFTER CANCEL OUTING TERMS
THEN ,
BY TRIGNOMATERIC IDENTITY
SIN²A + COS²A = 1
NOW ,
NOW
1/ sin A = cosec A
1/ COS A = SEC A
HENCE ,
HENCE PROVED