Math, asked by Anonymous, 10 months ago

prove that: (see the attachment)
solve step by step​

Attachments:

Answers

Answered by Anonymous
24

⠀⠀ || ✪✪ Prove.✪✪  ||

Take L.H.S.

tan A /(1-cot A) + cot A /(1-tan A)

( change quantity )

Sin A / Cos A = tan A

Cos A / Sin A = Cot A

= (sin A / Cos A )/(1-cos A/Sin A) + (cos A/Sin A )/(1- sin A/ cos A)

= sin² A /cos A(Sin A - Cos A) - Cos² A/sin A(sin A - cos A)

= (Sin³ A - Cos³ A)/sin A Cos A(Sin A - Cos A)

= ( Sin A - Cos A)(Sin² A + Cos² A + Sin A Cos A)/sin A Cos A(Sin A - Cos A)

( eliminate Sin A - Cos A from Denominator and numerator )

= ( sin² A + Cos² A + Sin A Cos A )/ Sin A cos A

= (1 + Sin A Cos A)/ Sin A Cos A

= (1/Sin A Cos A) + (Sin A Cos A/ Sin A Cos A)

= (1/Sin A ) × (1/ Cos A) + (Sin A Cos A/ Sin A Cos A)

= sec A Cosec A + 1

= R.H.S.

That's proved.

_____________________

Use Formula

★ (a³-b³) = (a-b)(a²+b²+ab)

★ ( 1/ Sinx ) = Cosec x

★ ( 1/Cos x ) = Sec x

★ sin² x + Cos² x = 1

_____________________

Answered by Anonymous
9

HEY MATE YOUR ANSWER IS HERE...

BY TAKING LHS

 \frac{ \tan \: a }{1 -  \cot \: a }  +  \frac{ \cot \: a}{1 -  \tan \: a }

NOW BY TRIGNOMATERIC RATIOS

tan \: a \:  =  \frac{sin \: a}{cos \: a}  \\  \\ cot \: a \:  =  \frac{cos \: a}{sin \: a}

HENCE ,

 \frac{ \frac{ \sin \: a }{ \cos \: a } }{1 -  \frac{cos \: a}{sin \: a} } +  \frac{ \frac{cos \: a}{sin \: a} }{1 -  \frac{sin \: a}{cos \: a} }

NOW

 \frac{ \frac{sin \: a}{cos \: a}}{ \frac{cos \: a - sin \: a \: }{cos \: a} }  +  \frac{ \frac{cos \: a}{sina} }{ \frac{sin \: a \:  - cos \: a}{sin \: a} }

BY SOLVING IT FURTHER WE GET

 \frac{ {sin}^{2}a }{cos \: a(sin \: a -  \: cos \: a)}  +  \frac{ {cos}^{2}a }{sin \: a(cos \: a \:  - sin \: a)}

THEN ,

BY STANDARDIZED FORM ( taking - as common)

 \frac{ {sin}^{2}a }{cos \: a(sin \: a -  \: cos \: a)}   -  \frac{ {cos}^{2}a }{sin \: a(sin \: a \:  - \: cos \: a)}

Now

 \frac{ {sin}^{3}a -  {cos}^{3}a  }{sin \: a \times  \: cos \: a \: (sin \: a \:  -  \: cos \: a \: )}

NOW BY IDENTITY

- = ( a - b ) ( + b² + ab )

let a = sin a

let b = cos a

by applying identity

 \frac{( \: sin \: a \:  -  \: cos \: a \: )( \:  {sin}^{2}a \:  +  { \: cos}^{2} a + sin \: a \: cos \: a) }{sin \: a \: cos \: a( \: sin \: a \:  -  \: cos \: a)}

AFTER CANCEL OUTING TERMS

 \frac{( \:  {sin}^{2}a \:  +  { \: cos}^{2} a + sin \: a \: cos \: a) }{sin \: a \: cos \: a}

THEN ,

BY TRIGNOMATERIC IDENTITY

SIN²A + COS²A = 1

 \frac{( \:  1 + sin \: a \: cos \: a) }{sin \: a \: cos \: a}

NOW ,

 =  \frac{1}{sin \: a \: cos \: a}  + 1

NOW

1/ sin A = cosec A

1/ COS A = SEC A

HENCE ,

sec \: a \: cosec \: a \:  + 1

HENCE PROVED

THANKS FOR YOUR QUESTION HOPE THIS HELPS...

KEEP SMILING ☺️✌️

Similar questions