Math, asked by Anonymous, 9 months ago

prove that: ( see the pic)
step by step ​

Attachments:

Answers

Answered by ritu16829
6

Step-by-step explanation:

hey mate ❤️ ❤️

plz refer to pic

hope it works ❤️❤️

plz mark it as brainliest answer

Attachments:
Answered by Anonymous
2

HEY MATE YOUR ANSWER IS HERE...

BY TAKING LHS

 \frac{sin \: a - sin \: b \: }{cos \: a  + cos \: b}  +  \frac{cos \: a - cos \: b}{sin \: a   +sin \: b }

 =  \frac{(sin \: a - sin \: b)(sin \: a  + sin \: b) + (cos \: a + cos \: b)(cos \: a - cos \: b)}{(sin \: a  + sin \: b)(cos \: a + cos \: b)}

NOW ,

BY IDENTITY

-b² = ( a + b )( a - b )

  =  \frac{ {sin}^{2} a -  {sin}^{2} b +  {cos}^{2}a -  {cos}^{2} b }{(sin \: a  + sin \: b)(cos \: a + cos \: b)}

NOW BY REARRANGING TERMS

  =  \frac{ ({sin}^{2} a  +  {cos}^{2}a) -  ({cos}^{2} b   + {sin}^{2} b ) }{(sin \: a  + sin \: b)(cos \: a + cos \: b)}

NOW BY TRIGNOMATRIC IDENTITY

SIN² + COS² = 1

HENCE ,

  =  \frac{ 1 - 1 }{(sin \: a  + sin \: b)(cos \: a + cos \: b)}

  =  \frac{ 0 }{(sin \: a  + sin \: b)(cos \: a + cos \: b)}

HENCE = 0

HENCE PROVED

THANKS FOR UR QUESTION HOPE IT HELPS

KEEP SMILING ☺️✌️

Similar questions