Math, asked by sumanomkar5, 13 days ago

prove that : sin 0/cot 0 + cosec 0 =2+ sin 0/cot 0 - cosec 0​

Answers

Answered by Anonymous
27

  \boxed{ \underline{ \underline{\footnotesize\tt \purple{Used \:  Formula \:  to  \: solve \:  this \:  question:-}}}} \:  \footnotesize✺

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\purple\leadsto \footnotesize \tt{ {cosec}^{2}  \:  \theta \:  -  \: {cot }^{2}  \: \theta  \: = 1}

 \purple\leadsto\footnotesize \tt{  cosec \: \theta =  \frac{1}{sin \:  \theta}  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \boxed{ \underline{ \underline{\footnotesize\tt \purple{Solution:-}}}} \: \footnotesize✺

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\purple\leadsto \tt{ \frac{sin  \: \theta}{cot \:  \theta \:  +  \: cosec \: \theta}  =  \footnotesize2  \: + \:  } \tt{ \frac{sin \:  \theta}{cot  \: \theta  \: - \:  cosec \:  \theta}  }

 \purple\leadsto\tt{ \frac{sin  \: \theta}{cot \:  \theta \:  +  \: cosec \: \theta} - \frac{sin \:  \theta}{cot  \: \theta  \: - \:  cosec \:  \theta}   =  \footnotesize2   }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \boxed{ \underline{ \underline{\footnotesize\tt \purple{Now \:  solve \:  LHS : -  }}}}

 \purple\leadsto\tt{ \frac{sin  \: \theta}{cot \:  \theta \:  +  \: cosec \: \theta} - \frac{sin \:  \theta}{cot  \: \theta  \: - \:  cosec \:  \theta}   }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \boxed{ \underline{ \underline{\footnotesize\tt \purple{Same \:  the \:  denominator }}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \purple\leadsto\tt{ \frac{sin  \: \theta \: (cot \:  \theta  \:  -  \:  cosec \: \theta) \:  -  \: sin \:  \theta \: (cot \:  \theta  \: +  \: cosec \: \theta)}{(cot  \: \theta  \:  +  \:  cosec \:  \theta)(cot  \: \theta  \: - \:  cosec \:  \theta)}}

 \purple\leadsto\tt{ \frac{sin  \: \theta \: (cot \:  \theta  \:  -  \:  cosec \: \theta  \:  - cot \:  \theta  \:  -  \: cosec \: \theta)}{{cot }^{2}  \: \theta  \:   -   \:  {cosec}^{2}  \:  \theta} }

\purple\leadsto \tt{ \frac{sin  \: \theta \: ( \cancel{cot \:  \theta}  \:  -  \:  cosec \: \theta  \:  \cancel{ - cot \:  \theta}  \:  -  \: cosec \: \theta)}{{cot }^{2}  \: \theta  \:   -   \:  {cosec}^{2}  \:  \theta}  }

 \purple\leadsto\tt{ \frac{sin  \: \theta \: (   \:  -  \:  cosec \: \theta  \:  \:  -  \: cosec \: \theta)}{{cot }^{2}  \: \theta  \:   -   \:  {cosec}^{2}  \:  \theta} }

 \purple\leadsto\tt{ \frac{sin  \: \theta \: (   \:  -2  \:  cosec \: \theta)}{{cot }^{2}  \: \theta  \:   - \:  {cosec}^{2}  \:  \theta} }

 \purple\leadsto\tt{ \frac{sin  \: \theta \: (   \:  -2  \:  cosec \: \theta)}{  - \:  ({cosec}^{2}  \:  \theta \:  -  \: {cot }^{2}  \: \theta  \: )} }

 \purple\leadsto\tt{ \frac{sin  \: \theta \: (   \:  \cancel -2  \:  cosec \: \theta)}{  \cancel - \:  ({cosec}^{2}  \:  \theta \:  -  \: {cot }^{2}  \: \theta  \: )} }

\purple\leadsto \tt{ \frac{2 \: sin  \: \theta \: (  \:  cosec \: \theta)}{ \:  ({cosec}^{2}  \:  \theta \:  -  \: {cot }^{2}  \: \theta  \: )} }

 \purple\leadsto\tt{ \frac{2 \: sin  \: \theta \: \times  \frac{1}{sin \: \theta} }{ 1} }

 \purple\leadsto\tt{ \frac{2  \cancel{\: sin  \: \theta }\: \times  \frac{1}{ \cancel{sin \: \theta}} }{ 1} }

  \leadsto\boxed{ \underline{ \underline{\footnotesize\tt \purple{2 }}}} \:  \footnotesize✺

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \footnotesize\tt{ L.H.S = R.H.S }

  \footnotesize\tt{ Hence ,Proved }

Answered by ramakantasahoo6154
2

Answer is above

Mark me brainliest

Attachments:
Similar questions