prove that (sin 0 + sec 0)² + (cos 0 + sec 0)²=7 tan²0+cot²0
Answers
Answer:
Answer with Step-by-step explanation:
LHS
(sin\theta+cosec\theta)^2+(cos\theta+sec\theta)^2(sinθ+cosecθ)
2
+(cosθ+secθ)
2
sin^2\theta+cosec^2\theta+2sin\theta cosec\theta+sec^2\theta+cos^2\theta+2cos\theta sec\thetasin
2
θ+cosec
2
θ+2sinθcosecθ+sec
2
θ+cos
2
θ+2cosθsecθ
Using identity :(a+b)^2=a^2+b^2+2ab(a+b)
2
=a
2
+b
2
+2ab
We know that
tan^2\theta+1=sec^2\theta, 1+cot^2\theta=cosec^2\theta,sec\theta=\frac{1}{cos\theta},cosec\theta=\frac{1}{sin\theta}tan
2
θ+1=sec
2
θ,1+cot
2
θ=cosec
2
θ,secθ=
cosθ
1
,cosecθ=
sinθ
1
sin^2\theta+cos^2\theta=1sin
2
θ+cos
2
θ=1
Using the formula
1+1+cot^2\theta+2sin\theta\times \frac{1}{sin\theta}+1+tan^2\theta+2cos\theta\times \frac{1}{cos\theta}1+1+cot
2
θ+2sinθ×
sinθ
1
+1+tan
2
θ+2cosθ×
cosθ
1
3+tan^2\theta+cot^2\theta+2+23+tan
2
θ+cot
2
θ+2+2
7+tan^2\theta+cot^2\theta7+tan
2
θ+cot
2
θ
LHS=RHS
Hence, proved.
#Learns more:
https://brainly.in/question/6770944