Math, asked by yp931613, 1 year ago

Prove that Sin(-1) 1/√5 + sin (-1) 2/√5=π/2

Answers

Answered by Mkambozz1322
0

Sin-14/5 + Sin-15/13 + Sin-116/65

Sin-1 [4/5 √(1-(5/13)2) + 5/13 √(1-(4/5)2)] + Sin-116/65 [∴Sin-1x + Sin-1y = Sin-1(x√(1-y2) + y√(1-x2)) ]

Sin-1[(4/5 * 12/13) + (5/13 * 3/5)] + Sin-116/65

Sin-1(63/65) + Sin-116/65

Sin-1 [63/65 √(1-(16/65)2) + 16/65 √(1-(63/65)2)]

Sin-1[(63/65 * 63/65) + (16/65 * 16/65)]

Sin-1[3969/4225 + 256/4225]

Sin-1(1)

π/2..............ans

Answered by AmritRaj001
5

Solution:

\sin ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{5}{13}\right)+\sin ^{-1}\left(\frac{16}{65}\right)=\frac{\pi}{2}sin

−1

(

5

4

)+sin

−1

(

13

5

)+sin

−1

(

65

16

)=

2

π

\Rightarrow \sin ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{5}{13}\right)=\frac{\pi}{2}-\sin ^{-1}\left(\frac{16}{65}\right)⇒sin

−1

(

5

4

)+sin

−1

(

13

5

)=

2

π

−sin

−1

(

65

16

)

\Rightarrow \sin ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{5}{13}\right)=\cos ^{-1}\left(\frac{16}{65}\right)⇒sin

−1

(

5

4

)+sin

−1

(

13

5

)=cos

−1

(

65

16

)

We just prove \bold{\sin ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{5}{13}\right)=\cos ^{-1}\left(\frac{16}{65}\right)}sin

−1

(

5

4

)+sin

−1

(

13

5

)=cos

−1

(

65

16

)

We take left hand side =\sin ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{5}{13}\right)=sin

−1

(

5

4

)+sin

−1

(

13

5

)

Let \sin ^{-1}\left(\frac{4}{5}\right)=x \text { and } \sin ^{-1}\left(\frac{5}{13}\right)=ysin

−1

(

5

4

)=x and sin

−1

(

13

5

)=y

\Rightarrow \sin x=\frac{4}{5} \text { and } \sin y=\frac{5}{13}⇒sinx=

5

4

and siny=

13

5

Now, \cos x=\sqrt{1-\sin ^{2} x}=\sqrt{1-\frac{16}{25}}=\frac{3}{5}cosx=

1−sin

2

x

=

1−

25

16

=

5

3

Now, \cos y=\sqrt{1-\sin ^{2} y}=\sqrt{1-\frac{25}{169}}=\frac{12}{13}cosy=

1−sin

2

y

=

1−

169

25

=

13

12

Now, \bold{\cos (x+y)=\cos x \cdot \cos y-\sin x \cdot \sin y}cos(x+y)=cosx⋅cosy−sinx⋅siny

\Rightarrow \cos (x+y)=\frac{3}{5} \times \frac{12}{13}-\frac{4}{5} \times \frac{5}{13}⇒cos(x+y)=

5

3

×

13

12

5

4

×

13

5

\Rightarrow \cos (x+y)=\frac{36}{65}-\frac{20}{65}⇒cos(x+y)=

65

36

65

20

\Rightarrow \cos (x+y)=\frac{16}{65}⇒cos(x+y)=

65

16

\Rightarrow x+y=\cos ^{-1}\left(\frac{16}{65}\right)⇒x+y=cos

−1

(

65

16

)

\bold{\Rightarrow \sin ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{5}{13}\right)=\cos ^{-1}\left(\frac{16}{65}\right)}⇒sin

−1

(

5

4

)+sin

−1

(

13

5

)=cos

−1

(

65

16

) = Right hand side.

Hence proved.

Similar questions