prove that sin ∅ / 1 + cos ∅ + 1 + cos∅ / sin∅ = 2 cosec ∅
Answers
Answered by
0
Answer:
Step-by-step explanation:
sinФ / 1 + CosФ + 1 + CosФ/SinФ
= Sin²Ф + (1 + CosФ)² / SinФ (1 + CosФ)
= Sin²Ф + Cos²Ф + 2CosФ + 1 / SinФ (1 + CosФ)
= 2 + 2CosФ / SinФ (1 + CosФ)
= 2 (1+CosФ) / SinФ (1 + CosФ)
= 2 / SinФ
= 2CosecФ
= R.H.S.
Hence proved.
Answered by
7
Question :
Prove that
Solution :
L.H.S :-
∵
∵
∵
∴ L.H.S = R.H.S
Similar questions